已知F1、F2是橢圓C:x2/a2+y2/b2=1(a>
已知F1、F2是橢圓C:x2/a2+y2/b2=1(a>b>0)的兩個焦點,P為橢圓C上一點,且PF1⊥PF2,若△PF1F2的面積為9,則b=______
考點:橢圓性質(zhì),解三角形解:解:橢圓:x?/a?+y?/b?=1,c?=a?-b?
∴F1(-c,0),F(xiàn)2(c,0),F(xiàn)1F2=2c∵PF1⊥PF2∴PF1?+PF2?=F1F2?=4c?=4(a?-b?)①由橢圓定義:PF1+PF2=2a,∴PF1?+PF2?+2PF1×PF2=4a?②②-①得2PF1×PF2=4b?,∴PF1×PF2=2b?
S△PF1F2=PF1×PF2/2=2b?/2=b?=9∴b=3補(bǔ)充練習(xí):
橢圓x2/a2+y2/b2=1(a>b>0)的兩個焦點F1,F2.點P在橢圓C上,且PF1垂直F1F2,PF=4/3,PF2=14/31)求橢圓方程2)若直線l過圓x2+y2+4x-2y=0的圓心M交橢圓A,B兩點,且A,B關(guān)于點M對稱,求直線l的方程.
解:(1)x^2/9+y^2/4=1(2)圓的方程可化為(x+2)^2+(y-1)^2=5.故圓心為(-2,1)令A(yù)(x1,y1) B(x2,y2),斜率為k,帶入橢圓方程有(x1-x2)(x1+x2)/9=-(y1-y2)(y1+y2)/4即k=-4(x1+x2)/9(y1+y2)由M(-2,1)可得斜率k=8/9又直線過點M(-2,1),所以y-1=8/9(x+2)找教案網(wǎng)
∴F1(-c,0),F(xiàn)2(c,0),F(xiàn)1F2=2c∵PF1⊥PF2∴PF1?+PF2?=F1F2?=4c?=4(a?-b?)①由橢圓定義:PF1+PF2=2a,∴PF1?+PF2?+2PF1×PF2=4a?②②-①得2PF1×PF2=4b?,∴PF1×PF2=2b?
S△PF1F2=PF1×PF2/2=2b?/2=b?=9∴b=3補(bǔ)充練習(xí):
橢圓x2/a2+y2/b2=1(a>b>0)的兩個焦點F1,F2.點P在橢圓C上,且PF1垂直F1F2,PF=4/3,PF2=14/31)求橢圓方程2)若直線l過圓x2+y2+4x-2y=0的圓心M交橢圓A,B兩點,且A,B關(guān)于點M對稱,求直線l的方程.
解:(1)x^2/9+y^2/4=1(2)圓的方程可化為(x+2)^2+(y-1)^2=5.故圓心為(-2,1)令A(yù)(x1,y1) B(x2,y2),斜率為k,帶入橢圓方程有(x1-x2)(x1+x2)/9=-(y1-y2)(y1+y2)/4即k=-4(x1+x2)/9(y1+y2)由M(-2,1)可得斜率k=8/9又直線過點M(-2,1),所以y-1=8/9(x+2)找教案網(wǎng)